

pymongoimport - Import csv files into MongoDB

pymongoimport is a collection of python programs for importing CSV
files into MongoDB [http://mongodb.com/].

Why do we have pymongoimport?

MongoDB already has a perfectly good (and much faster)
mongoimport [https://docs.mongodb.com/manual/reference/program/mongoimport/] program
that is available for free in the standard MongoDB community download [https://www.mongodb.com/download-center#community].

Well pymonogoimport does a few things that mongoimport doesn’t do (yet). For people
with new CSV files there is the --genfieldfile option which will automatically
generate a typed field file for the specified input file. Even with a field file pymongoimport
will fall back to the string type if type conversion fails on any input column.

pymongoimport allows you to use the --addlocator argument to automatically
include a locator in each document that is inserted. This locator will
indicate the file name and the line number of the line that was the input
for the generated document.

pymongoimport also has the ability to restart an upload from the
point where is finished. This restart capability is recorded in an
audit collection in the current database. An audit record is
stored for each upload in progress and each completed upload. Thus the
audit collection gives you a record of all uploads by filename and
date time.

Finally pymongoimport is more forgiving of dirty data. So if your
actual data doesn’t match your field type definitions then the type
converter will fall back to using a string type.

On the other hand
mongoimport [https://docs.mongodb.com/manual/reference/program/mongoimport/]
supports the more extensive security options of the
MongoDB Enterprise Advanced [https://www.mongodb.com/products/mongodb-enterprise-advanced]
product and because it is written in Go [https://golang.org/] it can use threads more effectively and so is generally faster.

pymongoimport command-line programs:

	Mongoimport
	Field Files

	Restart

	Examples

	Arguments

	multiimport

	splitfile

	pwc

Indices and tables

	Index

	Module Index

	Search Page

Mongoimport

Mongoimport is the command line program for importing CSV files into MongoDB.

Field Files

Each file you intend to upload must have a field file defining the
contents of the CSV file you plan to upload.

If a --fieldfile arguement is not explicitly passed in the program will look for a
fieldfile corresponding to the file name with the extension replaced
by .ff. So for an input file inventory.csv the corresponding field
file would be inventory.ff.

If there is no corresponding field file the upload will fail.

Field files (normally expected to have the extension .ff) define the names of columns and their
types for the importer. A field file is formatted line a
python config file [https://docs.python.org/2/library/configparser.html]
with each section defined by a name inside square brackets ([and]) and values for
the section defined by key=value pairs.

Here is an example CSV file
inventory.csv [https://github.com/jdrumgoole/pymongo_import/blob/master/test/inventory.csv]
defined by the following format,

	Inventory Item

	Amount

	Last Order

	Screws

	300

	1-Jan-2016

	Bolts

	150

	3-Feb-2017

	Nails

	25

	31-Dec-2017

	Nuts

	75

	29-Feb-2016

The field file generated by –genfieldfile is

[Inventory Item]
type=str
[Amount]
type=int
[Last Order]
type=datetime

The –genfieldfile file function uses the first line after the header
line to guess the type of each column. It trys in order for each
column to successfully convert the type to a string (str), integer
(int), float (float) or date (datetime).

The generate function may guess wrong if the first line is not
correctly parseable. In this case the user can edit the .ff file to
correct the types.

In any case if the type conversion fails when reading the actual
data-file the program will fall back to converting to a string
without failing (unless –onerror fail is specified).

Each file in the input list must correspond to a fieldfile format that is
common across all the files. The fieldfile is specified by the –fieldfile parameter.

Once you have generated a fiels dilw you can pass it in on the command line
by using the –fieldfile argument.

Restart

if a user specifies the –restart argument the program will keep track of what has
been uploaded by maintaining a document for each file in an audit collection. If the upload
fails or is interrupted for any reason, the user can restart the upload at the last line of the file
by including –restart on the command line. This will force the program to check the audit collection
for a corresponding record and restart the upload from the last written location. The audit records are keyed
by filename so for –restart to work correctly the same file path must be used for the the original upload
and the restart.

Examples

How to generate a field file

$pymongoimport --genfieldfile inventory.csv
Creating 'inventory.ff' from 'inventory.csv'

An example run:

$pymongoimport --delimiter '|' --database demo --collection demo --fieldfile mot_test_set_small.ff mot_test_set_small.csv
Using database: demo, collection: demo
processing 1 files
Processing : mot_test_set_small.csv
using field file: 'mot_test_set_small.ff'
Input: 'mot_test_set_small.csv' : Inserted 100 records
Total elapsed time to upload 'mot_test_set_small.csv' : 0.047

An example run where we want the upload to restart

Arguments

Positional arguments

	filenames

	List of files to be processed These files are expected to be in CSV format with fields delimited by
the --delimiter argument (defaults to ,.

Optional arguments

-h –help

Show the help message and exit.

–database name

Specify the name of the database to use [default: test]

–collection name

Specify the name of the collection to use [default : test]

–host mongodb URI

Specify the URI for connecting to the database. The full connection
URI syntax is documented on the
MongoDB docs website [https://docs.mongodb.com/manual/reference/connection-string/]

The default is mongodb://localhost:27017/test

–batchsize batchsize

set batch os_size for bulk inserts. This is the amount of docs the client
will add to a batch before trying to upload the whole chunk to the
server (reduces server round trips). The default batchsize is 500.

For larger documents you may find a smaller batchsize is more efficient.

–restart

For large batches you may want to restart the batch if uploading is
interrupted. Restarts are stored in the current database in a collection
called restartlog. Each file to be uploaded has its own record in the
restartlog. The restart log record format is

{ "name" : <name of file being uploaded>,
 "timestamp" : <datetime that this doc was inserted>,
 "batch_size" : <the batchsize specified by --batchsize>,
 "count" : <the total number of documents inserted from <name> file to <timestamp> >,
 "doc_id" : <The mongodb _id field for the last record inserted in this batch> }

The restart log is keyed of the filename so each filename must be unique otherwise
imports that are running in parallel will overwrite each others restart logs.
use record count insert to restart at last write also enable restart logfile [default: False]

Restarts will happen from the last record that was written. You
must specify restart when restarting an upload or when you wish to use
the restart option.

	–drop

	drop collection before loading [default: False]

	–ordered

	forced ordered inserts

	–fieldfile FIELDFILE

	field and type mappings. Defaults to the input file with the extension replaced by .ff.

	–delimiter DELIMITER

	The delimiter string used to split fields [default: ‘,’]

	–version

	show program’s version number and exit

	–addfilename

	Add file name field to every entry. This allows records to be associated with their
input file. [default : None]

	–addtimestamp {none,now,gen}

	Add a timestamp to each record. If timestamp value is none don’t add a timestamp. If timestamp
value is now add a single time stamp for all records. If timestamp is gen create timestamp
for each batch of records as they are inserted. Note that each batch of records (defined by
–batchsize) will have the same timestamp when gen is the arguement. [default: none]

	–has_header

	
The input file has a header line. We can use header line for column names [default: False]

–genfieldfile

Generate a fieldfile from the data file, we set
has_header to true [default: False]

	–id {mongodb,gen}

	
Autogenerate ID default [mongodb]

	–onerror {fail,warn,ignore}

	What to do when we hit an error parsing a csv file
[default: warn]

multiimport

splitfile

splitfile does what it says on the tin. Given a file it
will split that file into a preset number of chunks on line
boundaries. Its primary use is to split files for processing by
multiimport.

pwc

Index

 nav.xhtml

 Table of Contents

 		
 pymongoimport - Import csv files into MongoDB

 		
 Mongoimport

 		
 Field Files

 		
 Restart

 		
 Examples

 		
 Arguments

 		
 Positional arguments

 		
 Optional arguments

 		
 multiimport

 		
 splitfile

 		
 pwc

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

